Generating a sequence using prime numbers 2, 3, and 5 only, and then displaying an nth term (C++)(仅使用素数 2、3 和 5 生成序列,然后显示第 n 项 (C++))
问题描述
我正在解决一个问题,该问题要求使用素数 2、3 和 5 生成一个序列,然后显示序列中的第 n 个数字.所以,如果我让程序显示第 1000 个数字,它应该显示它.
I'm working on a problem that asks to generate a sequence using prime numbers 2, 3, and 5, and then displaying then nth number in the sequence. So, if I ask the program to display the 1000th number, it should display it.
我不能使用数组或类似的东西,只能使用基本的决策和循环.
I can't be using arrays or anything like that, just basic decisions and loops.
我开始研究它并碰壁......这就是我得到的:
I started working on it and hit a wall... here's what I got:
不幸的是,该代码不能满足要求.它显示数字如 14,其中包括一个素数 7.... 这些数字只能除以 3 个指定的素数 (2,3,5).
Unfortunately, that code doesn't do what's required. It displays numbers such as 14, which includes a prime number 7.... The numbers can only be divided by the 3 specified primes (2,3,5).
我发现了一些我想要理解的信息,但到目前为止还不确定如何实现它......也许使用了很多 for() 循环?所以,看来我必须使用 2^n * 3^m * 5^k 的概念,其中 n+m+k>0.
I found some information that I'm trying to understand, and so far not sure how to implement it... maybe using lots of for() loops? So, it appears I have to use the concept of 2^n * 3^m * 5^k where n+m+k>0.
我想我必须通过一个测试来运行一个数字,它首先检查它是否可以被 2^1 * 3^0 * 5^0 整除,然后是 2^0 * 3^1 * 5^0,然后是 2^0 * 3^0 * 5^1,依此类推......只是不知道从哪里开始.
I guess I have to run a number through a test where it checks to see first if it's fully divisible by 2^1 * 3^0 * 5^0, then 2^0 * 3^1 * 5^0, then 2^0 * 3^0 * 5^1, and so on... Just not sure where to begin.
推荐答案
勾选这个.
这篇关于仅使用素数 2、3 和 5 生成序列,然后显示第 n 项 (C++)的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!