How to do scatter and gather operations in numpy?(如何在numpy中进行分散和收集操作?)
问题描述
我想在 Numpy 中实现 Tensorflow 或 PyTorch 的分散和收集操作.我一直在挠头一段时间.任何指针都非常感谢!
I want to implement scatter and gather operations of Tensorflow or PyTorch in Numpy. I have been scratching my head for a while. Any pointers are greatly appreciated!
PyTorch 散射
PyTorch 聚会
推荐答案
结果证明 scatter
方法比我预期的要多得多.我没有在 NumPy 中找到任何现成的函数.我在这里分享它是为了任何可能需要用 NumPy 实现它的人的利益.(ps self
是方法的目标或输出.)
The scatter
method turned out to be way more work than I anticipated. I did not find any ready made function in NumPy for it. I'm sharing it here in the interest of anyone who may need to implement it with NumPy.
(p.s. self
is the destination or output of the method.)
def scatter_numpy(self, dim, index, src):
"""
Writes all values from the Tensor src into self at the indices specified in the index Tensor.
:param dim: The axis along which to index
:param index: The indices of elements to scatter
:param src: The source element(s) to scatter
:return: self
"""
if index.dtype != np.dtype('int_'):
raise TypeError("The values of index must be integers")
if self.ndim != index.ndim:
raise ValueError("Index should have the same number of dimensions as output")
if dim >= self.ndim or dim < -self.ndim:
raise IndexError("dim is out of range")
if dim < 0:
# Not sure why scatter should accept dim < 0, but that is the behavior in PyTorch's scatter
dim = self.ndim + dim
idx_xsection_shape = index.shape[:dim] + index.shape[dim + 1:]
self_xsection_shape = self.shape[:dim] + self.shape[dim + 1:]
if idx_xsection_shape != self_xsection_shape:
raise ValueError("Except for dimension " + str(dim) +
", all dimensions of index and output should be the same size")
if (index >= self.shape[dim]).any() or (index < 0).any():
raise IndexError("The values of index must be between 0 and (self.shape[dim] -1)")
def make_slice(arr, dim, i):
slc = [slice(None)] * arr.ndim
slc[dim] = i
return slc
# We use index and dim parameters to create idx
# idx is in a form that can be used as a NumPy advanced index for scattering of src param. in self
idx = [[*np.indices(idx_xsection_shape).reshape(index.ndim - 1, -1),
index[make_slice(index, dim, i)].reshape(1, -1)[0]] for i in range(index.shape[dim])]
idx = list(np.concatenate(idx, axis=1))
idx.insert(dim, idx.pop())
if not np.isscalar(src):
if index.shape[dim] > src.shape[dim]:
raise IndexError("Dimension " + str(dim) + "of index can not be bigger than that of src ")
src_xsection_shape = src.shape[:dim] + src.shape[dim + 1:]
if idx_xsection_shape != src_xsection_shape:
raise ValueError("Except for dimension " +
str(dim) + ", all dimensions of index and src should be the same size")
# src_idx is a NumPy advanced index for indexing of elements in the src
src_idx = list(idx)
src_idx.pop(dim)
src_idx.insert(dim, np.repeat(np.arange(index.shape[dim]), np.prod(idx_xsection_shape)))
self[idx] = src[src_idx]
else:
self[idx] = src
return self
对于 gather
可能有一个更简单的解决方案,但这就是我的解决方案:
(这里的 self
是从中收集值的 ndarray.)
There could be a simpler solution for gather
, but this is what I settled on:
(here self
is the ndarray that the values are gathered from.)
def gather_numpy(self, dim, index):
"""
Gathers values along an axis specified by dim.
For a 3-D tensor the output is specified by:
out[i][j][k] = input[index[i][j][k]][j][k] # if dim == 0
out[i][j][k] = input[i][index[i][j][k]][k] # if dim == 1
out[i][j][k] = input[i][j][index[i][j][k]] # if dim == 2
:param dim: The axis along which to index
:param index: A tensor of indices of elements to gather
:return: tensor of gathered values
"""
idx_xsection_shape = index.shape[:dim] + index.shape[dim + 1:]
self_xsection_shape = self.shape[:dim] + self.shape[dim + 1:]
if idx_xsection_shape != self_xsection_shape:
raise ValueError("Except for dimension " + str(dim) +
", all dimensions of index and self should be the same size")
if index.dtype != np.dtype('int_'):
raise TypeError("The values of index must be integers")
data_swaped = np.swapaxes(self, 0, dim)
index_swaped = np.swapaxes(index, 0, dim)
gathered = np.choose(index_swaped, data_swaped)
return np.swapaxes(gathered, 0, dim)
这篇关于如何在numpy中进行分散和收集操作?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!