Resize PyTorch Tensor(调整 PyTorch 张量)
问题描述
我目前正在使用 tensor.resize() 函数将张量调整为新形状 t = t.resize(1, 2, 3)
.
I am currently using the tensor.resize() function to resize a tensor to a new shape t = t.resize(1, 2, 3)
.
这给了我一个弃用警告:
This gives me a deprecation warning:
不推荐使用非就地调整大小
non-inplace resize is deprecated
因此,我想切换到 tensor.resize_()
函数,这似乎是适当的就地替换.然而,这给我留下了
Hence, I wanted to switch over to the tensor.resize_()
function, which seems to be the appropriate in-place replacement. However, this leaves me with an
无法调整需要 grad 的变量的大小
cannot resize variables that require grad
错误.我可以退回到
from torch.autograd._functions import Resize
Resize.apply(t, (1, 2, 3))
这是 tensor.resize() 为了避免弃用警告所做的.这对我来说似乎不是一个合适的解决方案,而是一个黑客.在这种情况下,我如何正确使用 tensor.resize_()
?
which is what tensor.resize() does in order to avoid the deprecation warning.
This doesn't seem like an appropriate solution but rather a hack to me.
How do I correctly make use of tensor.resize_()
in this case?
推荐答案
您可以改为选择 tensor.reshape(new_shape)
或 torch.reshape(tensor, new_shape)
如:
You can instead choose to go with tensor.reshape(new_shape)
or torch.reshape(tensor, new_shape)
as in:
# a `Variable` tensor
In [15]: ten = torch.randn(6, requires_grad=True)
# this would throw RuntimeError error
In [16]: ten.resize_(2, 3)
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
<ipython-input-16-094491c46baa> in <module>()
----> 1 ten.resize_(2, 3)
RuntimeError: cannot resize variables that require grad
<小时>
上面的RuntimeError
可以通过使用tensor.reshape(new_shape)
In [17]: ten.reshape(2, 3)
Out[17]:
tensor([[-0.2185, -0.6335, -0.0041],
[-1.0147, -1.6359, 0.6965]])
# yet another way of changing tensor shape
In [18]: torch.reshape(ten, (2, 3))
Out[18]:
tensor([[-0.2185, -0.6335, -0.0041],
[-1.0147, -1.6359, 0.6965]])
这篇关于调整 PyTorch 张量的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!