What is the difference between model.to(device) and model=model.to(device)?(model.to(device) 和 model=model.to(device) 有什么区别?)
问题描述
假设模型原本是存储在CPU上,然后我想把它移到GPU0上,那么我可以这样做:
Suppose the model is originally stored on CPU, and then I want to move it to GPU0, then I can do:
device = torch.device('cuda:0')
model = model.to(device)
# or
model.to(device)
这两行有什么区别?
推荐答案
没有语义差异.nn.Module.to
函数将模型移动到设备.
No semantic difference. nn.Module.to
function moves the model to the device.
但要小心.
对于张量(文档):
# tensor a is in CPU
device = torch.device('cuda:0')
b = a.to(device)
# a is still in CPU!
# b is in GPU!
# a and b are different
对于模型(文档):
# model a is in CPU
device = torch.device('cuda:0')
b = a.to(device)
# a and b are in GPU
# a and b point to the same model
这篇关于model.to(device) 和 model=model.to(device) 有什么区别?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!