When should I (not) want to use pandas apply() in my code?(我什么时候应该(不)想在我的代码中使用 pandas apply()?)

本文介绍了我什么时候应该(不)想在我的代码中使用 pandas apply()?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

I have seen many answers posted to questions on Stack Overflow involving the use of the Pandas method apply. I have also seen users commenting under them saying that "apply is slow, and should be avoided".

I have read many articles on the topic of performance that explain apply is slow. I have also seen a disclaimer in the docs about how apply is simply a convenience function for passing UDFs (can't seem to find that now). So, the general consensus is that apply should be avoided if possible. However, this raises the following questions:

  1. If apply is so bad, then why is it in the API?
  2. How and when should I make my code apply-free?
  3. Are there ever any situations where apply is good (better than other possible solutions)?

解决方案

apply, the Convenience Function you Never Needed

We start by addressing the questions in the OP, one by one.

"If apply is so bad, then why is it in the API?"

DataFrame.apply and Series.apply are convenience functions defined on DataFrame and Series object respectively. apply accepts any user defined function that applies a transformation/aggregation on a DataFrame. apply is effectively a silver bullet that does whatever any existing pandas function cannot do.

Some of the things apply can do:

  • Run any user-defined function on a DataFrame or Series
  • Apply a function either row-wise (axis=1) or column-wise (axis=0) on a DataFrame
  • Perform index alignment while applying the function
  • Perform aggregation with user-defined functions (however, we usually prefer agg or transform in these cases)
  • Perform element-wise transformations
  • Broadcast aggregated results to original rows (see the result_type argument).
  • Accept positional/keyword arguments to pass to the user-defined functions.

...Among others. For more information, see Row or Column-wise Function Application in the documentation.

So, with all these features, why is apply bad? It is because apply is slow. Pandas makes no assumptions about the nature of your function, and so iteratively applies your function to each row/column as necessary. Additionally, handling all of the situations above means apply incurs some major overhead at each iteration. Further, apply consumes a lot more memory, which is a challenge for memory bounded applications.

There are very few situations where apply is appropriate to use (more on that below). If you're not sure whether you should be using apply, you probably shouldn't.



Let's address the next question.

"How and when should I make my code apply-free?"

To rephrase, here are some common situations where you will want to get rid of any calls to apply.

This seems like an idiosyncrasy of the API. Using apply to convert integers in a Series to string is comparable (and sometimes faster) than using astype.

The graph was plotted using the perfplot library.

import perfplot

perfplot.show(
    setup=lambda n: pd.Series(np.random.randint(0, n, n)),
    kernels=[
        lambda s: s.astype(str),
        lambda s: s.apply(str)
    ],
    labels=['astype', 'apply'],
    n_range=[2**k for k in range(1, 20)],
    xlabel='N',
    logx=True,
    logy=True,
    equality_check=lambda x, y: (x == y).all())

With floats, I see the astype is consistently as fast as, or slightly faster than apply. So this has to do with the fact that the data in the test is integer type.


GroupBy operations with chained transformations

GroupBy.apply has not been discussed until now, but GroupBy.apply is also an iterative convenience function to handle anything that the existing GroupBy functions do not.

One common requirement is to perform a GroupBy and then two prime operations such as a "lagged cumsum":

df = pd.DataFrame({"A": list('aabcccddee'), "B": [12, 7, 5, 4, 5, 4, 3, 2, 1, 10]})
df

   A   B
0  a  12
1  a   7
2  b   5
3  c   4
4  c   5
5  c   4
6  d   3
7  d   2
8  e   1
9  e  10

<!- ->

You'd need two successive groupby calls here:

df.groupby('A').B.cumsum().groupby(df.A).shift()
 
0     NaN
1    12.0
2     NaN
3     NaN
4     4.0
5     9.0
6     NaN
7     3.0
8     NaN
9     1.0
Name: B, dtype: float64

Using apply, you can shorten this to a a single call.

df.groupby('A').B.apply(lambda x: x.cumsum().shift())

0     NaN
1    12.0
2     NaN
3     NaN
4     4.0
5     9.0
6     NaN
7     3.0
8     NaN
9     1.0
Name: B, dtype: float64

It is very hard to quantify the performance because it depends on the data. But in general, apply is an acceptable solution if the goal is to reduce a groupby call (because groupby is also quite expensive).



Other Caveats

Aside from the caveats mentioned above, it is also worth mentioning that apply operates on the first row (or column) twice. This is done to determine whether the function has any side effects. If not, apply may be able to use a fast-path for evaluating the result, else it falls back to a slow implementation.

df = pd.DataFrame({
    'A': [1, 2],
    'B': ['x', 'y']
})

def func(x):
    print(x['A'])
    return x

df.apply(func, axis=1)

# 1
# 1
# 2
   A  B
0  1  x
1  2  y

This behaviour is also seen in GroupBy.apply on pandas versions <0.25 (it was fixed for 0.25, see here for more information.)

这篇关于我什么时候应该(不)想在我的代码中使用 pandas apply()?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!